Publications


Most Recent

An unlikely route to low lattice thermal conductivity: small atoms in a simple layered structure, Wanyue Peng, Guido Petretto, Gian-Marco Rignanese, Geoffroy Hautier, Alexandra Zevalkink, Joule, https://doi.org/10.1016/j.joule.2018.06.014, (2018).

A practical field guide to thermoelectrics: fundamentals, synthesis, and characterization, Alexandra Zevalkink, David M. Smiadak, Jeff L. Blackburn, Andrew J. Ferguson, Michael L. Chabinyc, Olivier Delaire, Jian Wang, Kirill Kovnir, Joshua Martin, Laura T. Schelhas, Taylor D. Sparks, Stephen D. Kang, Maxwell T. Dylla, G. Jeffrey Snyder, Brenden Ortiz, Eric Toberer, Applied Physics Reviews, 05, 021303 (2018).

Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite DefectsBrenden R Ortiz, Wanyue Peng, Lídia C Gomes, Prashun Gorai, Taishan Zhu, David M Smiadak, G Jeffrey Snyder, Vladan Stevanović, Elif Ertekin, Alexandra Zevalkink, Eric S Toberer, Chemistry of Materials, 30, 3395-3409 (2018).

Praseodymium Telluride: A High-Temperature, High-ZT Thermoelectric Material. Cheikh, Dean, Brea E. Hogan, Trinh Vo, Paul Von Allmen, Kathleen Lee, David M. Smiadak, Alexandra Zevalkink, Bruce S. Dunn, Jean-Pierre Fleurial, and Sabah K. Bux,  Joule (2018).

Crystal chemistry and thermoelectric transport of layered AM2X2 compounds, Wanyue Peng, Sevan Chenakian, and Alexandra Zevalkink, Inorg. Chem. Frontiers, 10.1039/C7QI00813A, (2018).

Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I), M. A. Kraft, S. P. Culver, M. Calderon, F. Böcher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek, W. G. Zeier, J. Am. Chem. Soc. 139, 10909-18, (2017).

Making and Breaking Bonds in Superconducting SrAl4–xSix (0 ≤ x ≤ 2), A. Zevalkink, M. Bobnar, U. Schwarz, and Y. Grin,  Chem. Mater., 29 1236–1244 (2017).


Book Chapters

Chain Forming A5M2Sb6 and A3MSb3 Zintl phases.  A. Zevalkink, U. Aydemir, J. Snyder, in: Thermoelectricity, CRC Press, ed. C. Uher, (2016) in Press.

Zintl Phases: Recent Developments in Thermoelectrics and Future Outlook.  S. M. Kauzlarich, E. S. Toberer, G. J. Snyder, A. Zevalkink, , Royal Society of Chemistry, Thermoelectricity, (2015) In press.


Thermal and Electronic Transport 

Thinking like a chemist: intuition in thermoelectric materials.  W. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, , Angewandte Chemie Int. Ed. (2015), Accepted.

Phonon engineering through crystal chemistry, E. S. Toberer, A. Zevalkink, G. J. Snyder,  J. Mater. Chem., 21 (2011) 15843.


Zintl Thermoelectrics

Achieving zT> 1 in inexpensive Zintl phase Ca9Zn4+ xSb9 by phase boundary mapping, Ohno, Saneyuki, Umut Aydemir, Maximilian Amsler, Jan‐Hendrik Pöhls, Sevan Chanakian, Alex Zevalkink, Mary Anne White, Sabah K. Bux, Chris Wolverton, and G. Jeffrey Snyder, Advanced Functional Materials 27, no. 20 (2017).

Thermoelectric properties of EuZn2Sb2 Zintl compounds: zT enhancement through Yb substitution for Eu, Y. Takagiwa, Y. Sato, A. Zevalkink, I. Kanazawa,  K. Kimura, Y. Isoda,  and Y. Shinohara, J. Alloys and Compounds, J. Alloys and Compounds, 703 (2017) 73-79.

Enhanced thermoelectric properties of the Zintl phase BaGa2Sb2 via doping with Na or K.  U. Aydemir, A. Zevalkink, A. Ormeci, S. Bux, G. J. Snyder, J. Mater. Chem. A, 4 (2016) 1867-1875.

High temperature thermoelectric properties of Zn-doped Eu5In2Sb6, S. Chanakian, U. Aydemir, A. Zevalkink, Z. M. Gibbs, J.-P. Fleurial, S., Bux, S, G. J., Snyder, J. Mater. Chem. C, (2015) DOI: 10.1039/C5TC01645B.

High temperature thermoelectric properties of the solid-solution Zintl phase Eu11Cd6-xZnxSb12, N. Kazem, A. Hurtado, F. Sui, S. Ohno, A. Zevalkink, G. J. Snyder, S. Kauzlarich, S.,  Chem. Mater. 27 (2015) 4413–4421.

Thermoelectric properties and electronic structure of the Zintl phase Sr5In2Sb6 and the Ca5-xSrxIn2Sb6 solid solution, A. Zevalkink, S. Chanakian, U. Aydemir, A. Ormeci, G. Pomrehn, S. Bux, J.-P. Fleurial, G. J. Snyder, J. Phys.: Condens. Matter., 27 (2015) 015801.

Enhanced thermoelectric properties of Sr5In2Sb6 via Zn-doping,  S. Chanakian, A. Zevalkink, U. Aydemir, Z. M. Gibbs, G. Pomrehn, J.-P. Fleurial, S. Bux, G. J. Snyder,  J. Mater. Chem. A., 19 (2015) 10289-10295.

BaGa2Sb2 with Zn Thermoelectric Enhancement in BaGa2Sb2 by Zn Doping,  U. Aydemir, A. Zevalkink, A. Ormeci, Z. M. Gibbs, S. Bux, G. J. Snyder, Chem. Mater., 27 (2015) 1622–1630.

Thermoelectric properties of the Zintl phases Yb5M2Sb6 (M = Al, Ga, In),  U. Aydemir, A. Zevalkink, A. Ormeci, H. Wang, S. Ohno, S. Bux, G. J. Snyder, Dalton Trans., 44 (2015) 6767-74.

High temperature transport properties of BaZn2Sn2, U. Aydemir, A. Zevalkink, S. Bux, G. J. Snyder, J. Alloys and Compounds, 622 (2015) 402-407.

Thermoelectric properties of the Ca5Al2-xInxSb6 solid solution,  A. Zevalkink, S. Swallow, S. Ohno, A. Aydemir, S. Bux, G. J. Snyder, Dalton Trans., 43 (2014)15872-15878.

Nonstoichiometry in the Zintl phase Yb1-xZn2Sb2 as a route to thermoelectric optimization,  A. Zevalkink, W. Zeier, E. Cheng, G. J. Snyder, J.-P. Fleurial, S. Bux, Chem. Mater., 26 (2014) 5710-5717.

Thermoelectric properties of the Yb9Mn4.2-xZnxSb9 solid solution, O. Saneyuki, A. Zevalkink, Y. Takagiwa, S. Bux, G. J. Snyder, J. Mater. Chem. A, 2 (2014) 7478-7483.

Defect controlled electronic properties in AZn2Sb2 Zintl phases (A=Ca, Sr, Eu, Yb),   G. Pomrehn, A. Zevalkink, W. Zeier, G. J. Snyder,  Angew. Chem., 53 (2014) 3422-3426.

Thermoelectric properties and electronic structure of the Zintl phase Sr5Al2Sb6, A. Zevalkink, Y. Takagiwa, K. Kitahara, K. Kimura, G. J. Snyder,  Dalton Trans., 43 (2014) 4720-4725.

High temperature thermoelectric properties of the solid-solution Zintl phase Eu11Cd6Sb12-xAsx (x < 3),  K. Nasrin, X. Weiwei, O. Saneyuki, A. Zevalkink, G. Miller, G. J. Snyder, S. Kauzlarich, Chem. Mater, 26 (2014) 1393–1403.

Thermoelectric properties and electronic structure of the Zintl phase Sr3AlSb3, A. Zevalkink, G. Pomrehn, J. Swallow, Y. Takagiwa, G. J. Snyder, Chem. Sus. Chem., 6 (2013) 2316-2321.

Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9,  S. Bux, A. Zevalkink, O. Janka, D. Uhl, S. M. Kauzlarich, G. J. Snyder, J.-P. Fleurial,  J. Mater. Chem. A, 2 (2013) 215-220.

Thermoelectric properties of Ca5In2Sb6,  A. Zevalkink, J. Swallow, G. J. Snyder,  Dalton Trans., 42 (2013) 9713-9719.

Phase characterization, thermal stability, high temperature transport properties and electronic structure of the rare-earth Zintl phosphides Eu3M2P4 (M = Ga, In),  T. Yi, G. Zhang, N. Tsujii, J.-P. Fleurial, A. Zevalkink, G. J. Snyder, N. G. Jensen, S. Kauzlarich, Inorg. Chem., 52 (2013) 3787-94.

Improved thermoelectric properties in Zn-doped Ca5Ga2Sb6, S. Johnson, A. Zevalkink, G. J. Snyder,  J. Mater. Chem., 1 (2012) 4244-4249.

Thermoelectric properties of Sr3GaSb3 – a chain-forming Zintl compound, A. Zevalkink, W. Zeier, G. S. Pomrehn, E. Schechtel, W. Tremel, G. J. Snyder,  Energy Environ. Sci., 5 (2012) 9121-9128.

Influence of the triel elements (M = Al, Ga, In) on the transport properties of Ca5M2Sb6 Zintl compounds, A. Zevalkink, G. S. Pomrehn, S. Johnson, J. Swallow, Z. M. Gibbs, G. J Snyder,  Chem. Mater, 24 (2012) 2091.

Thermoelectric properties of Zn-doped Ca3AlSb3,  W. Zeier, A. Zevalkink, E. Schechtel, W. Tremel, G. J. Snyder, J. Mater. Chem., 22 (2012) 9826.

Thermoelectric Properties of Mn-Doped Ca5Al2Sb6, A. Zevalkink, J. Swallow, G. J. Snyder,  J. Elect. Mater. 41 (2012) 813-819.

Improved carrier concentration control in Zn-doped Ca5Al2Sb6, A. Zevalkink, E. S. Toberer, T. Bleith, E. Flage-Larsen, G. J Snyder,  J. App. Phys., 110 (2011) 013721.

Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery,  A. Zevalkink, E. S. Toberer, E. Flage-Larsen, W. Zeier, G. J. Snyder, Energy Environ. Sci., 4 (2011) 510–518.

The Zintl compound Ca5Al2Sb6 for low-cost thermoelectric power generation, E. S. Toberer, A. Zevalkink, N. Cristoso, G. J. Snyder, Adv. Funct. Mater., 20 (2010) 4357.


Thermoelectrics: Cage compounds

Electronic structure and thermoelectric properties of pnictogen-substituted ASn1.5Te1.5 skutterudites (A = Co, Rh, Ir), A. Zevalkink, K. Star, U. Aydemir, G. J. Snyder, J.-P. Fleurial, S. Bux, T. Vo, P. von Allmen,  J. Appl. Phys., 118 (2015) 035107.

Phase stability and chemical composition dependence of the thermoelectric properties of the type-I clathrate Ba8AlxSi46-x (8 < x < 15),  T. Naohito, J. Roudebush, A. Zevalkink, C. A. Cox-Uvarov, G. J. Snyder, S. M. Kauzlarich, J. Solid State Chem., 184 (2011) 1293–1303.

Synthesis, structural characterization, and physical properties of the type-I clathrates A8Zn18As28 (A = K, Rb, Cs) and Cs8Cd18As28, H. He, A. Zevalkink, Z. M. Gibbs, G. J. Snyder, S. Bobev,  Chem. Mater., 24 (2012) 3596–3603.


Other

Processing and characterization of Sc2O3-CeO2-ZrO2 electrolyte based intermediate temperature solid oxide fuel cells, A. Zevalkink, A. Hunter, M. Swanson, C. Johnson, J. Kapat, N. Orlovskaya,  Mater. Research Soc. Fall Proceedings (2006).


Patents

1.    G. J. Snyder, E. S. Toberer, A. Zevalkink, Zintl phases for thermoelectric applications (patent #20120091404).

 

Advertisements